
Towards Task-Based Linguistic Modeling for designing
GUIs

Iyad Khaddam, Nesrine Mezhoudi, Jean Vanderdonckt

Louvain Interaction Laboratory, Louvain School of Management (LSM) Place des Doyens, 1

Université catholique de Louvain (UCL) B-1348 Louvain-la-Neuve, Belgium

{iyad.khaddam, nesrine.mezhoudi, jean.vanderdonckt}@uclouvain.be
RÉSUMÉ

The linguistic perspective emphasizes the use of

linguistic taxonomy to classify (partition) graphical user

interface concepts and elements on several linguistic

levels with clearly-defined interfaces between levels.

This perspective is based on Nielsen’s Virtual Protocol

for Interaction that consists of several linguistic levels:

goal, pragmatic (task), semantic, syntactical, lexical,

alphabetical and physical.

A linguistic modeling is modeling the graphical interface

by abstracting each linguistic level. The aim of the

linguistic modeling is to enhance the maintainability

quality of the graphical user interface model as defined

in ISO-25010:2011, by enhancing sub-qualities of

modularity, analyzability and modifiability.

Recent research reported on the linguistic perspective

and the linguistic modeling requirements. In this paper,

we elaborate more towards a linguistic modeling by

modeling the task level; the high abstract level in the

linguistic stack. Our contribution is an executable

hierarchical task model that fulfils the specific needs

towards linguistic modeling.

Mots Clés

Task model ; Architecture and formalism of interactive

systems; Linguistic modeling.

ACM Classification Keywords

H.5.2: Graphical User Interfaces; H.5.3: Theory and

Models; H.5.m: Miscellaneous.

INTRODUCTION

Developing usable User Interfaces (UIs) is a challenging

and a complex task. This complexity mainly comes from

the heterogeneity of contexts of use. Users interact using

different devices (desktop, mobile...etc.), with different

goals, cultures and capabilities and within different

environments and situations. The perfect UI is hard

(pragmatically impossible) to achieve. To cope with such

continuously changing domain we need to prepare for

changes that are expected at any time.

Enhancing maintainability of the GUI enhances the

ability to implement changes. ISO/IEC 25010:2011

defines maintainability as [1] “degree of effectiveness

and efficiency with which a product or system can be

modified by the intended maintainers”. This quality is

sub-divided into sub-qualities represented in table 1.

ISO 25010:2011: definitions of sub-quality

Modularity: The degree to which the system or computer program
is composed of discrete components such that a change to one
component has minimal impact on other components.

Reusability: The degree to which an asset can be used in more
than one software system, or in building other assets.

Analyzability: The degree to which the software product can be
diagnosed for deficiencies or causes of failure in the software, or
for the parts to be modified to be identified.

Modifiability: Corrections, improvements or adaptations of the
software to changes in environment and in requirements and
functional specifications.

Testability: The degree to which the software product enables
modified software to be validated.

Table 1. Maintainability sub-qualities in ISO-25010:2011.

Recently, researchers reported on a linguistic perspective

to develop Graphical User Interfaces (GUIs) [2]. The

aim of this perspective is to enhance the maintainability

quality in the developed GUI. This perspective is based

on Nielsen’s Virtual Protocol for Interaction [3]. It

employs a well-defined linguistic taxonomy to

repartition GUI concepts and elements on several

linguistic levels. These levels are mutually-exclusive: a

GUI concept/element belongs to one and only one level.

The resulting categories from the linguistic taxonomy

(the linguistic levels) are: goal, task, semantic, syntax-

time, syntax-space, widgets and widgets properties. The

linguistic taxonomy does not only classify GUI concepts

and elements, but also classifies changes on the GUI on

different levels. Repartitioning GUI elements on levels

leads to loosely-coupled modules on each level. This

would enhance modularity on the GUI and consequently

enhances the maintainability. A background on the

linguistic perspective and how it enhances modularity is

introduced in the next section. The linguistic perspective

differentiates GUI input elements that change the task

state (task input elements) from others and classifies

them on the task level.

Model-Based User Interface (MB-UI) approaches gained

a lot of interest from the Human-Computer Interaction

(HCI) community due to their benefits and promises [4].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

IHM'15, October 27-30, 2015, Toulouse, France

© 2015 ACM. ISBN 978-1-4503-3844-8/15/10…$15.00

DOI: http://dx.doi.org/10.1145/2820619.2820636

1

Marc
Zone de texte
© ACM, 2015. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Actes de la 27ème conférence francophone sur l'Interaction Homme-Machine, 2015.http://dx.doi.org/10.1145/2820619.2820636

The ultimate goal of these approaches is to address

complexity of interaction in UIs. This complexity is

addressed by mainly: (1) abstraction: to isolate the

problem of interest and thus concentrate on the more

important aspects, and (2) enforcing an engineering

discipline by establishing systematic approaches to

develop UIs.

A linguistic modeling approach aims at abstracting

modules on linguistic levels defined in the linguistic

perspective [12]. The marriage between modeling

approaches and the linguistic perspective promises to

have the benefits of both. A linguistic model of the GUI

promises to follow an engineering discipline with

enhanced maintainability in the GUI. But, is modeling

from a linguistic perspective feasible?

The answer to the above question is to build a linguistic

model by abstracting each linguistic level. The highest

linguistic levels are the goal and the task. The

contribution of this paper is to introduce a task model

that fits the linguistic task level. This is a first step

towards building a linguistic model. The difference

between our model and other task models is mainly in:

(1) Task identification criteria (adopted from the

literature) to separate what is a task (on the task level)

and what is refinement on how to carry out the task (on

the semantic level, the lower level), (2) A modeling

notation that helps in identifying needed task input

elements in the GUI. Researchers and task modelers

interested in addressing maintainability of GUIs from a

linguistic perspective are the primary targeted audience

of this paper.

In the next section, we give a background on the

linguistic perspective to allow understanding how the

linguistic perspective enhances maintainability. Our

contribution and requirements for the linguistic task

model are further explained at the end of section two

which motivates the need for a linguistic task model. In

section three, we review some existing task models to

identify shortcomings in fulfilling linguistic task model

requirements. Section four introduces our linguistic task

model’s notation and gives an example on how to use the

notation. Section five presents the simulator and

execution of the task model. Finally, section six states

conclusion and future works.

A BACKGROUND OF THE LINGUISTIC PERSPECTIVE

Before explaining the linguistic perspective, we spot the

light on the role of classification in modeling, which is

usually implicitly considered. The linguistic perspective

emphasizes the need for an explicit classification and a

well-defined taxonomy to enhance maintainability of the

GUI.

Modeling and classification

Each UI model has a specific point of view to the UI

domain. This point of view guides abstraction efforts of

the modeler and thus controls modeling decisions. For

example, distribution of the domain concepts and

elements in Cameleon Reference Framework (CRF) [13]

depends on the point of view adopted. CRF defines four

levels of abstraction for a UI: (1) the task model, (2) the

Abstract UI model (AUI), that is modality and platform

independent, (3) the Concrete UI model (CUI), that is

platform-independent and finally (4) the Final UI model

(FUI) that is platform-dependent. This point of view

implies an implicit classification that classifies concepts

like “the color” (a modality-dependent, platform

independent concept) on the CUI level. The same applies

on “layout” concepts: they are classified at the CUI level.

Classification and maintainability

The general procedure to modify a GUI passes through

the following steps: (1) Locate the place of the change,

(2) identify the element(s) to be changed, (3) Delineate

the propagation of the change (all related and affected

elements), (4) Modify the GUI and finally (5) Test the

GUI.

The first step is related to identifying the module in the

GUI. In a MB-UI approach that employs several levels

of abstraction (the case of CRF), this step is related to

locating the model/level concerned with the change.

Locating the right module/level is related to the

modularity sub-quality in the GUI. This sub-quality is

better addressed in these approaches than in single-

model approaches. A single-model approach employs

only one model to generate the final UI (like from task

model to the final UI).

The second and third steps are related to the

analyzability sub-quality (see analyzability definition).

The fourth step is related to the modifiability sub-quality

and the last step is related to the testability sub-quality.

Classification impacts the modularity: what

modules/levels should be defined in a GUI, and what

concepts/elements should exist in each module. The

example on how “the color concept” is classified in CRF

shows this impact on MB-UI approaches. A mutually-

exclusive classification of GUI concepts and elements

enhances the modularity quality because it repartitions

GUI concepts and elements on separate modules/levels

(the classification categories). A concept/element can’t

repeat on two modules/levels. If such a repetition exists,

locating the place of change is affected. In other words:

repetition of concepts and elements increases coupling

between modules/levels and thus affect maintainability.

The Linguistic Perspective

The basic idea of the linguistic perspective is to have a

mutually-exclusive classification of GUI concepts and

elements that is based on a well-defined taxonomy. The

classification categories define the modules of the GUI.

As GUI concepts and elements are repartitioned on these

modules, we need also to define interfaces between

them. The resulting modular GUI is expected to enhance

2

the maintainability because modules are loosely coupled

with well-defined interfaces between them.

In 1986, Jacob Nielsen introduced his Virtual

Communication Protocol of Interaction. He aims to use

his protocol to analyze the interaction between the

human and the machine. His protocol employs a

linguistic classification of the interaction. The protocol

consists of seven levels of interaction (ordered by level

of abstraction): goal, task, semantic, syntax, lexical,

alphabetical and physical. These levels form a stack of

interaction, where each lower level implements required

services for the upper level (realize the upper level).

Therefore, the interaction is analyzed in a refined way

from goals to physical level.

Researchers in [2] turned the protocol of Nielsen from an

analysis tool to a taxonomy tool to classify GUI concepts

and artifacts. This taxonomy also classifies activities of

developing a GUI on linguistic levels, like: Where to

identify a task? Where to define navigation between

containers? Where to define placement on the screen?

The output of their work is a classification of GUI

concepts and elements on adapted levels from the

original protocol. These levels are presented in table 2 in

the first column. The second column shows the activities

classified per level, while the third column shows the

main GUI concepts and elements classified

(repartitioned) per level, and grouped into key

representative groups. The last column shows the

communication interface between levels. Definitions of

key terms introduced in the table 2 are below:

Detailed

functions

Defined on the semantic level to realize a task. They

detail how a task is carried out. They should identify

all needed UI elements (input and output elements) on
the GUI for performing the task.

UI elements A UI element is either of type input or output. UI

elements are concretized on the screen as widgets.
They can be visible (like a label, a text box, a button

or another widget) or non-visible (like a finger

gesture, a mouse click, a key-press or others).
Concretizing input elements is an activity on lower

levels.

Task input
element

is an input element that can exclusively change a task
state (like complete a task or roll it back), but can’t do

anything else (like acquire data from the user of

execute a detailed function). None-task input elements
can’t change a task state. Anyway, they can execute a

detailed function or acquire data from the user.

Syntax-time
container

is a logical group of UI elements that should be
available together at the same time. Availability of a

UI element on the screen here is not related to

visibility of the concretizing widget. A UI element
might be concretized as a non-visible input (keyboard

shortcut or gesture or others). We may use the shorter

term “time container” for these containers.

Navigation

Elements

are responsible of moving on the time axe from one

time-container to another. They can be concretized as

concrete input widgets (like a button or a link). An
example is the next or back buttons in a GUI wizard.

Syntax-space

container

is a group of UI elements that belong to concurrent

syntax-time containers (time containers that appear at
the same time). A syntax-time container defines

placement rules that control its UI elements placement

on the screen. These rules define acceptable

placement of UI elements on the screen. We may use

the shorter term “space container” for them.

 Level Activities
Key GUI concepts &
elements

Communication
Interface

Goal
the goal of the user of
the GUI

goal -

Task
Define tasks needed
to attain the goal

Task input
elements

U
I

E
le

m
en

ts

-Realize goals.

Semantic
Define detailed
functions needed to
carry out a task

Non-task input
and output
elements

-Realize tasks by
defining needed
detailed functions.

Syntax-
time

Define distribution of
UI elements on time
by defining time
containers.
Define navigation

Time
containers.
Navigation
elements.

C
o

n
ta

in
er

s

-Realize distribution
of UI elements on
time.

Syntax-
space

place UI elements in
time containers on
the screen

Space
containers

-Realize placement
of UI elements on
the screen.

Widgets
map UI elements to
GUI widgets

Concrete GUI
widgets

G
U

I
W

id
ge

ts
 -map UI elements

and containers to
widgets.

Widgets
Properties

Set properties of GUI
widgets

Properties of
widgets

Implement widgets

Table 2. The linguistic classification of GUI activities and

GUI concepts and elements.

The linguistic perspective illustrates that concretization

of concepts on the final GUI as widgets might lead to

loss of their relation to the concept. For example: A

button that completes a task on the GUI is not at the

same level of abstraction as a button that validates data

on the GUI. These two buttons are also different from a

third button that simply moves to the next or previous

screen. Each of these buttons should be related/defined

to/at the right level of abstraction. This is further

explained in the next example.

Take the example of a GUI for registration to a

conference. The end-user needs to fill registration

information and then pay the fees. Registration

information include the user’s personal information,

registration type (regular, student or discounted fees),

additional information if exists, and billing information.

The goal of the user from using the GUI is: Register for a

conference. This goal is further refined at the task level

by performing two tasks: “Fill registration information”

and “Pay conference fees”. The task level should identify

task input elements, which are in this case, input

elements each completes the related task. In figure 1, we

present the “Finalize Order” task input element that

completes the first task.

On the semantic level (figure 1): For conciseness, we

only refine the task “Fill registration information”. At

this level, we need to define detailed functions to carry

out the task. These detailed functions in turn identify all

UI elements needed to carry out the task.

3

 Figure 1. Outcome on the semantic level. “Finalize Order”

is a task input element.

On the syntax-time: we define a correct distribution on

time (that respects environment constraints). We may

have two styles: (1) Display UI elements at the same

time. (2) Define navigation as in figure 2.

Figure 2. Distribute on time containers and define

navigation elements for parts of the GUI.

On the syntax-space (figure 3): we refine only the

syntax-time style 1 for conciseness: place elements on

screen. Figure 3 depicts only the output of this level for

the first time container: Personal Information according

to syntax-time style 2 in figure 2.

On the widget level (figure 4): map UI elements to

concrete GUI widgets. Finally, on widget Properties

level (figure 5): Setting properties of widgets to get the

final GUI.

On the final GUI, we note that every element is related to

the level of abstraction that defines it. The “next step”

button in figure 5 is defined at the syntax-time level,

while other input elements (concretized as text boxes)

are defined at the semantic level. The reader can foresee

that the input element “Finalize Order” (see figure 2)

shall be concretized on the screen as a widget (like a

button).

Please notice that upper levels may impose constraints

on the choices on lower levels (like selection of widgets).

Finally, the linguistic perspective enhances

maintainability by enhancing sub-qualities as

demonstrated in table 3.

Figure 3. Placement of elements on the screen.

Figure 4. Mapping UI elements with concrete GUI widgets.

Figure 5. Setting widgets properties and the final GUI.

A Linguistic task model’s requirements

The linguistic modeling approach aims at abstracting

each linguistic level. The promise is to add the benefits

of modeling approaches to maintainability enhancements

in the linguistic perspective. The first step towards a

linguistic model is to abstract the goal and task levels.

From the previous background on the linguistic

perspective, we elicit the following requirements for a

linguistic task model:

1- Well-defined criteria to separate between the

goal and the task levels/models.

G
re

y

sh
ap

es

ar
e

ab
st

ra
ct

o
u

tp
u
t

el
em

en
ts

,
w

h
it

e
sh

ap
es

ar

e
ab

st
ra

ct

in
p

u
t

el
em

en
ts

4

2- Well-defined criteria to separate between the

task and the semantic model/level.

3- A notation that supports identifying task input

elements.

Support for ISO-25010:2011 maintainability sub-qualities

Modularity: The perspective consists of 7 levels (modules), with
defined interfacing between them. Changing a level will not affect
the levels above, and may change impose changes to lower levels if
the interfacing part is affected (replace a widget by another modifies
only the widgets level and lower).

Reusability: If we want to create a GUI for registration to another
conference that follows the same task model and provides same
semantic but with a different GUI style, the task and semantic levels
can be imported directly to the new system.

Analyzability: Every element at a level can be traced to upper level.
For instance, a widget can be traced to the detailed function and task
that needs it.

Modifiability: The perspective can classify a change based on
required activities (modification) per level. Modifiability can be
addresses per level instead of the complete GUI.

Testability: modifying a level doesn’t affect upper levels. No testing
for upper levels is required.

Table 3. The linguistic perspective and maintainability.

Our proposed task model follows the hierarchical task

analysis approach. Unfortunately, hierarchical task

analysis couples goals and tasks in an inseparable way.

The hierarchy of tasks is a hierarchy of goals and sub-

goals. This is further discussed in the next section.

Anyway, we do not know of other approaches that

separate goals and tasks clearly. Thus, the first

requirement to separate between goals and tasks is

impossible to satisfy.

The second requirement is fulfilled by reviewing the

literature on task models. We investigate how reviewed

task models identify tasks and adopt the most appropriate

criteria. Lastly, the third requirement is addressed by

introducing a task modeling notation that enables

automatic identification of task input elements.

A REVIEW OF EXISTING TASK MODELS

The purpose of this literature review is to demonstrate

that existing task models do not fulfill the linguistic task

model requirements in section 2. This would justify why

we need yet another task model. We do not provide an

exhaustive analysis of all existing task models. We

analyze a representative set of models only.

The models analyzed are: HTA [5], GOMS [8] , CTT [9]

and K-MAD [14] and HAMSTERS [11]. Another

analyzed model, the Guerrero model [10], employs task

models in designing user interfaces for workflows.

Goals and tasks

In the late 1960s, Annett and Duncan offered a means to

describing system in terms of goals and sub-goals, with

feed-back loops in nested hierarchies [6]. This developed

later into the specification of HTA (Hierarchical Task

Analysis). The theory is based on a goal-directed

behavior where we identify sub-goals in a hierarchy

linked by plans. Plans describe how to perform sub-goal

and determine conditions to trigger a sub-goal. The

performance towards a goal can be achieved at multiple

levels of analysis.

HTA is the bases of all existing task models. The theory

is based on goals decomposition. Sub-goals are goals in

turn. The hierarchy of tasks is a hierarchy of goals. Thus,

separation between goals and tasks is impossible.

GOMS (Goals, Operators, Methods and Selection Rules)

defines the concepts goals and tasks. Goals in GOMS are

only high-level goals that are decomposed into tasks or

sub-goals. The goal concept in GOMS is not meant to

separate goals from tasks. GOMS describes the

procedural knowledge in order for a user to carry out

tasks on a device or system and is intended to use after a

complete hierarchical task analysis.

In what concerns the linguistic perspective, hierarchical

task analysis approaches can’t separate tasks from goals

and thus a task model will inherit the limitation of

identifying what is a task and what is a goal. Anyway,

we consider the main goal at the goal level, and the

decomposition of this goal at the task level.

Task decomposition stopping Criteria

This is one of the critical aspects in HTA. The

hierarchical decomposition stopping criterion in HTA is

determined through the probability of failure (P)

multiplied by the cost of failure (C) [7]. When the

estimation of this formula is acceptable, the analyst can

stop the decomposition. Although this formula is simple

enough, applicability is hard.

GOMS does not introduce any changes to the HTA

theory. It can be established after the complete HTA

analysis. Thus it also inherits the problem of defining the

decomposition stopping criteria. The pragmatic approach

provided in GOMS is based on judgment calls [8]. The

analyst needs to decide when to stop relying on a

psychological theory or model for how people do the

work. GOMS defines the following concepts: goals,

tasks, methods, operators and selection rules. Methods in

GOMS are a sequence of operators to carry out a task. In

the linguistic perspective, GOMS methods fit at the

semantic level.

Identification of tasks in CTT is based on identification

of activities in the scenario. Tasks in the hierarchy can be

added to represent a semantic grouping of identified

activity tasks. Anyway, the decomposition may continue

and stop at the granularity of identifying needed user

input element. In the latter case, from a linguist

perspective, CTT may identify non-task input elements,

which should be identified at the semantic level. It may

also identify navigation elements (like pagination on a

grid of flights), which should be identified at the syntax-

time linguistic level.

5

K-MAD is a hierarchical model of tasks from the most

general one (root) to the most detailed ones (elementary

actions) [14]. The stopping criterion is the elementary

action which in the linguistic perspective might be at the

semantic or even lower level.

Guerrero’s model [10] addresses developing user

interfaces to workflow systems. The model contains

three main entities: the workflow, the process and the

task. The workflow is related to a hierarchy of

processes. Leaves in the process hierarchy represent

tasks. CTT model is employed to model tasks and model

the UI. In that, Guerrero’s model differs from CTT in the

employment of CTT in the UI design as a sub activity in

the workflow development.

The interest of this model to this paper is the definition

of a set of task identification criteria. These criteria

identify root tasks that should exist in the process model.

The root tasks are further refined using CTT to design

the UI. Task identification criteria are based on changes

on the work environment as described in the scenario.

These criteria are:

- Change of space: when the location of operations

changes.

- Change of resource: when the scenario suggests that

new or different resources are exploited. Resources

are of types: user, material and immaterial

- Change of time: when the scenario indicates a

different time period in which the task is performed.

Three type exist: interruption, waiting point

(decision or accumulation) and permanence of

execution unit (synchronization point).

- Change of nature: tasks can have the following

natures: manual, automatic, interactive or

mechanical.

Task models that aim at generating the final user

interface cover all linguistic levels. Thus, Guerrero’s

models can not be adopted as a linguistic task model.

Anyway, the process model in Guerrero’s model is at the

task linguistic level while the task model in Guerrero’s

fits all the other linguistic levels. Thus, Guerrero’s task

identification criteria can be employed in the linguistic

task model in order to identify leaf tasks.

Task notation and identification of task input
elements

The widely used notation in tasks models is the CTT

notations. Although several variations for this notation

exist to enhance expressiveness power of the task model

or mapping with system models, like HAMSTER [11],

they all use temporal relations defined in CTT.

Although powerful, CTT temporal relations are not

enough to identify task input elements in the linguistic

perspective. We show a scenario on this limitation.

In order for a user to search for a flight, s/he fills in

search parameters. The system searches for relevant

flights and displays them on the screen. The user selects

the preferred flight. This scenario can be modeled using

CTT notation as in figure 6.

Figure 6: Search for flight using CTT notation

The tasks “display flights” and “select flight” in figure 6

might be implemented in the GUI as a table of flights

with a “select” button on each row to select the flight.

This select button is a task input element because it

completes the task “select flight”. The number of task

input elements is equal to the number of flights in the

search result. The linguistic perspective requires

identifying all task input elements, provided that we

know the number of flights to display. The notation

doesn’t reflect that the select flight task will produce a

number of task input elements related to the number

of flights displayed. This dynamic aspect in task

execution is important in the linguistic perspective.

Note that another style is to display one flight and a

select button at a time. This style differs from the above

at the syntax-time level: defining time containers and

navigation. Even in this style, we need to identify all

produced task input elements.

K-MAD notation provides a solution to this dynamic

aspect, but the notation introduced employs calling

functions on the data model. From a linguistic

perspective, these functions are at the semantic level. If

such functions are to be used on the task level, they

should take the form of a service to be implemented on

the semantic level. Klug [15] introduced a task state and

ports on tasks to exchange data to turn CTT model into

executable task model. Data ports from the linguistic

perspective are at the semantic level. Anyway, task state

diagram is interesting and at the linguistic task level.

In the next section, we introduce a linguistic task model

notation to overcome this limitation.

A LINGUISTIC TASK MODEL

The need for a new task model notation is justified by

the linguistic requirement to identify task input elements.

Task analysis and identification of task are already

addressed in the literature and we adopted task

identification criteria from Guerrero model. The task

hierarchy is established by logically grouping identified

tasks (like in CTT). A task can have one of the five

categories: user, interactive, system, mechanical and

abstract. These categories encompass categories in CTT

and in Guerrero’s model. The change we introduce in our

6

task model is a notation that supports identifying task

input elements.

Identification of user input elements is based on the task

category. User tasks are not considered in the GUI,

because they are manual tasks. Thus no input elements

are needed for these tasks. System tasks are performed

by the system and require not interaction from the user to

be started or completed. The same applies to mechanical

tasks that are performed by machines (not computers), so

they have no impact on the interaction. Abstract tasks are

logical tasks in the hierarchy and do not have effect on

identifying task input elements (they group input

elements from children tasks). The only interesting

category that affects identifying task input elements is

the interactive category as they are performed by the user

using the GUI.

An interactive task needs an input element so the user

can denote the task as completed. Other task input

elements might be needed to give the user control over

the performance of the task. For instance, can the user

rollback a completed task? This is important if the user

can change his mind after completing the task (an

example is selecting a flight and then deciding to select

another).

The task-state diagram

Determining needed task input elements for a task

depends on the task state. The user needs a complete

input element on the GUI to complete the task in hand. If

the task can be suspended, a suspend input is needed.

Once it is suspended, we may need to resume it

explicitly using a different task input element. Our task

model defines a configurable task state diagram for

tasks. Each task can configure its diagram. Identification

of task input elements for an interactive task depends on

its configured state diagram. The generic task state

diagram is depicted in figure 7. The states are explained

in table 4.

Transitions in a task’s state diagram from state A to state

B is defined as a condition. When the condition is

satisfied, the transition occurs. There are three types of

conditions:

1- Automatic: the condition is always true and the

transition is automatic

2- User: the condition is true when the user

provides a required explicit input.

3- Other Condition (or Condition for short): any

other boolean expression. When this condition

is true, the transition is performed.

A transition type is the type of its condition. Transitions

for system tasks can be of type “Automatic” or

“Condition”. User and mechanical tasks has no impact

on the GUI. Anyway, for consistency, a state diagram

with “Automatic” transitions is attached to them.

Transitions for interactive tasks are richer.

Employing task states can be noticed in other researches,

like in [16], where researchers enrich CTT by adding

states to tasks to support run-time execution of the task

mode. Task states in our model enable identifying task

input elements. Besides, researchers in [16] use CTT

temporal relations to define transitions among tasks,

while states in our model play a major role in defining

these transitions (in the coming section).

Properties to configure an interactive task state
diagram

Every interactive task must define the condition for the

complete transition state. This condition must be of type

“User” or “Condition”, with use as a default. Setting the

condition type to “User” means the task requires an input

element on the GUI to allow the user to complete it.

Setting the condition type to “Condition” means the task

depends on the state of another task(s) to complete. We

elaborate more on this case after introducing relations

between tasks.

State Type

Created The task is created by the system. Task initialization can

happen here.

Offered The system offers the task to the user to start

Started The task is in the course of running.

Suspended The task is in the course of running. For interactive

tasks, an explicit input from the user is needed.

Completed The task has completed execution and the sub-goal is
satisfied.

Destroyed Resources reserved by the task can be released

Errored Something prevents running the task.

Table 4. Definition of task states

An interactive task sets, by default, all transitions to

“Automatic”, with the exception for the complete

transition. Transition types can be configured by setting

the task properties. These properties and their impact on

the state diagram are discussed in the following.

Figure 7. The Task State Diagram and transitions.

Assume the user performing a task would like to

withdraw already filed in information and restart from

the beginning. Such tasks are cancellable tasks. Setting

the canCancel task’s property to true sets the cancel

transition type to “User”. This impacts the GUI by

adding a task input element to cancel the task. Setting the

canCancel property to false removes the cancel transition

from the task’s state diagram.

Assume the user can rollback a task. If the task can be

rolled back, a task input element to rollback is needed on

7

the GUI. An example is when the user selects a flight

then changes her/his mind. Not every task can be rolled

back. A payment for a flight task can’t be rolled back by

simply changing the task state. Rolling back a payment

usually requires a different process. Rolling back a task

can be of two types: (1) Stateless: re-create the task and

discard all previous task information. (2) State-full:

restore the task information previously entered before

completion. The task property canRollBack can have one

of three values: false, stateless and statefull. The value of

this property controls the rollback transition. The false

value removes the rollback transition. The stateless and

statefull values set the rollback translation type to user,

although it can be modified to a condition (a relation to

another task).

The property “mayError” denotes a task might be

prevented from execution due to various circumstances.

If these circumstances are detectable by the system, we

can define a condition on the error transition. If these

circumstances are not detectable by the system, the user

should be given this means to move the task to the error

state by a task input element on the GUI. The

“mayError” property can have one of the values: false

(removes the error transition), condition (define a

condition transition) and User (define a “User” error

transition). Another related property is the “canRecover”

which denotes how to recover from the error if possible.

It accepts the same values of the property “mayError”.

The property “canSuspend” on a task controls the

suspend transition in a similar way to canCancel

property. The resume transition is influenced by this

property. A task might be suspended by the user action,

but resumed based on the state of another task. In this

case, the suspend transition is set to user but the resume

transition is a condition. The resume transition initial

type is set to user when the suspend transition type is set

to user.

The destroy transition is a special case and is defined

when a task is dynamically created by another. Dynamic

tasks are discussed later in this section. For dynamic

tasks, destroy transition can have one of two types: user

or condition. Offer and start are condition transitions.

The user can’t control to start a task by an input. The

system offers and starts the task once conditions are

satisfied. The create transition is a special transition that

is related to dynamic tasks (discussed later section).

Tasks relations

Relations between tasks control the task execution

sequence towards attaining the goal of the parent task.

Relations take the form of ECA (Event, Condition and

Action) rules:

Event ON TS.State TS is the source task

Condition TD.State= “value” TD is the destination task

Action TD.Transition

An example on relations is:

ON Fill_Flight_Search_Info.Completed

If (Display_Flight.State=”Created”)

Display_Flight.offer

Because transitions are un-ambiguously defined in the

task’s state diagram, the condition part can be

automatically verified when executed in the condition.

Thus, we can omit the condition part from the relation.

The action part is ensured to be executed in the relation,

but the destination task may not change its state.

Changing the destination task state depends on the

transition condition. If the transition’s condition is

evaluated to true, the state is changed.

Task relations can be seen as adding an “AND”

condition (the event and condition) to the task’s

transition defined in action part. In the example above,

the task Display_Flights changes its state to “Started” if

the offer transition condition is evaluated to true and the

Fill_Flight_Search_Info state is “Completed”.

Relations can be defined on sibling tasks in the

hierarchy. Children tasks can also be related to direct

parents. An example on defining relations between tasks

is depicted in figure 8. In this figure, we note that a child

task has a relation with the parent to complete it upon

completion.

Optional tasks

Optional tasks are tasks that always look to parent tasks

as completed, although their state diagram indicates a

different state. An optional task has the property

“isOptional” set to true.

Task Repetition

Repetition can be implemented on a task T using

relations like: On T.Completed, T.offer. Anyway, this

can’t be executed at run time, because the “offer”

transition is not possible from the “Completed” state.

The rule should be updated to: On T.Completed,

T.create. The latter rule means a new instance of the task

T is created once the task T is completed. We call the

newly created task instance a dynamic task.

A dynamic task is a task that is created by another task at

run-time. Creation of these tasks (repetition decision)

could be initiated by an explicit action from the user or

by the system. The need for a decision for repetition

justifies the need for a different task (the justification for

identifying this task is a change of time::decision point).

Thus, to repeat a task “T”, we need a task for the

decision “R”. The relation between these tasks to enable

repetition can be defined like: On R.Completed, T.create.

R is called the pumping task (it pumps dynamic tasks in

the model).

If the repetition decision is taken by the user, the

pumping task must be interactive and dynamic. If the

repetition decision is taken by the system, the pumping

task needs to have the property “repeatable” set to “true”.

This is important because it has implications on the state

diagram: an automatic transition is defined from the

8

completed state to the created state. The repetition

condition in a system pumping task is the condition of its

offer transition.

Demonstration and implementation

Building a convincing example on using the notation

would take a large space. A pragmatic, and still

convincing, technique is to demonstrate expressiveness

of the approach in comparison to other notations.

The comparison with CTT notation is demonstrated in

figure 8. This figure shows how temporal relations can

be represented using our notation. Thus, the notation

introduced in the linguistic task model is at least

equivalent to CTT notation.

Figure 8. Representation of CTT temporal relations using

the linguistic task model notation.

I

d

P
a

re

n
t

Task Justification Configuration

1 / Search for a
flight

Grouping Abstract, Stateless
rollback,

2 1 Fill Search

params.

- Interactive, State-full

rollback, canCancel=true

3 1 Display
Flights

Grouping Abstract, Stateless
rollback,

4 3 Repeat on

flights

Repetition. System, Stateless

rollback,

repetitionTask=true

5 3 Display a

Flight

From 2: Change

in nature:

interactive-
>system

System, Stateless

rollback,

canCancel=false

6 3 Select the

Flight

From 4:

Decision point

Interactive, Stateless

rollback,
canCancel=false

Table 5. Decomposition of the goal “Search for a flight”.

The linguistic task model notation addresses also the

dynamic aspect of task execution. We give an example

on this dynamic aspect, which is not supported in CTT

notation to the same level of details (see explanation on

this limitation on page 6, column 2).

The example we present has the goal “Search for a

flight”. This goal is decomposed into the following tasks

with justifications and configurations in table 5. The

scenario works as follows: The user fills in search

parameters. The system searches for relevant flights and

displays them on the screen. The user selects the

preferred task.

The task “Display Flights” is a repetitive task, because

for each flight the system displays, the user has the

choice to select it or select another one. Thus, the

notation enforces adding a system pumping task that

pumps the tasks “Display a Flight” and “Select the

flight”. That pumping task repetition condition is the

number of flights in the search result. Table 5 shows

tasks, their justification and configuration values.

Figure 9. Search for flight example.

From a linguistic perspective, Figure 9 provides the

means to identify task input elements. Each dynamic

interactive task “select the flight” requires a task input

element for completion. The total identified task input

elements at run-time is equivalent to the number of

flights in the search result. Besides, other task input

elements can be identified for each task from its state

diagram and transitions. Every “User” transition requires

a task input element to enable the transition.

The current implementation for designing the task model

uses a java API. A graphical designer is still under work.

The Java API allows creating tasks and configuring

properties. It also allows defining relations between

tasks. The critical and essential part in the

implementation is the run-time simulator for a linguistic

task model that generates task input elements. This

simulator is already implemented and tested.

Figure 10 shows the result of executing the task model in

the simulator at two moments: the first is at the start and

the second after the selection of a flight. Every task is

displayed in a rectangle. The border color of the

rectangle reflects the task state (see color caption in

figure 8). Grey color denotes the “Created” state (the

Repeat on flights task), while “Black” color denotes

undefined state (the case of a dynamic task).

Figure 10 demonstrates the creation of dynamic tasks

after completing the “Fill search param.” task. Tasks are

refined at the semantic level by defining detailed

functions that define how to carry out the task. This

includes the needed non-task input elements for every

task, and also transition conditions for the system tasks.

9

The repetition condition in the model must be realized at

the semantic level based on the search result. In the

simulator on the linguistic task level, system repetition

conditions are realized as repetition for two times only.

This is why we see only two instances of the dynamic

tasks “Display a flight” and “select the flight”.

Figure 10. Executing the “search for a flight” task model in

the simulator.

Figure 10 also demonstrated the identification of task

input elements for each task. For example, we can see

four rollback elements. Each rollback has a different

purpose on the GUI. The rollback on the “select flight0”

task is to allow selecting a different flight. The rollback

on the “Display Flight” task is to allow re-executing

children, which includes: re-execute the query and re-

create dynamic tasks. It might look like a refresh button.

The rollback on the “Fill search params.” allows

modifying current search parameters (stateful rollback).

The rollback on the root task is to rollback everything

including current search parameters. The GUI designer at

a later stage can decide how to manage these different

rollback, but he already knows that ignoring any is

limiting a functionality in the model.

CONCLUSION AND FUTURE WORKS

In this paper, we presented a linguistic task model and

notation. The presented linguistic task model clearly

separates the task and the semantic levels by adopting a

well-defined set of task identification criteria proposed

by Guerrero. We also discussed the impossibility to

separate goals from tasks in hierarchical task approaches.

A new task modeling notation is introduced. This

notation enables identification of task input elements.

This identification is based on the task state diagram that

is configured on each task.

The notation also addressed the dynamic aspect of

modeling by introducing dynamic tasks and pumping

tasks. It also presented relations on tasks based on ECA

rules on tasks states. Anyway, further research is needed

to enhance the understandability of the notation.

The task model is the first brick towards modeling GUI

from a linguistic perspective. In the future, we will keep

working on modeling other linguistic levels. Tool

support should be worked on too. We needs to work on

creating a tool to support the notation introduced.

BIBLIOGRAPHIE
1. ISO/IEC, “ISO/IEC 25010 - Systems and software engineering –

Systems and software Quality Requirements and Evaluation
(SQuaRE) – System and software quality models,” International

Organization for Standardization, Tech. Rep., 2010.

2. Khaddam, I., Mezhoudi, N., Vanderdonckt , J. A Linguistic
Perspective to Develop Graphical User Interfaces. 3ed

International Conference on Control, Engineering & Information

Technology (CEIT). Tlemcen, Al-geria, 25-27 May, 2015
(accepted).

3. Nielsen, J. A. Virtual Protocol Model for Computer-Human

Interaction. International Journal of Man-Machine Studies, March

1986, Vol.24, Is-sue.3 , pp. 301-312.

4. http://www.w3.org/TR/mbui-intro/

5. Annett, J. (2003). Hierarchical task analysis. Handbook of

cognitive task design, 17-35.

6. Annett, J., Duncan, K.D., 1967. Task analysis and training design.

7. Annett, J., Duncan, K.D., Stammers, R.B., Gray, M.J., 1971. Task
Analysis. Department of Employment Training Information paper

6. HMSO, London.

8. Kieras, D. GOMS Models for Task Analysis. The Handbook of
Task Analysis for Human-Computer Interaction, Ed. Dan Diaper,

Neville A.Stanton, Lawrence Erlbaum Associates, pp. 83-116.

2004.

9. Paternò , F., Model-Based Design and Evaluation of Interactive
Applications. Applied Computing, Springer-Verlag London , 2000

10. Guerrero, J. G., Vanderdonckt, J., Lemaigre, G. Identification

Criteria in Task Modeling. Human-Computer Interaction

Symposium IFIP International Federation for Information

Processing Volume 272, 2008, pp 7-20

11. Barboni, E., Ladry, J., Navarre, D., Palanque, P., Winckler, M.:
Beyond modelling: an integrated environment supporting co-

execution of tasks and systems models. In: Proceedings of the 2nd

ACM SIGCHI Symposium on Engineering interactive Computing
Systems. EICS 2010, pp. 165–174. ACM, New York (2010).

12. Khaddam, I., Mezhoudi, N., Vanderdonckt , J. Towards a

Linguistic Modeling of Graphical User Interfaces: Eliciting
Modeling Requirements. 3ed International Conference on Control,

Engineering & Information Technology (CEIT). Tlemcen, Al-

geria, 25-27 May, 2015.

13. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L.,

& Vanderdonckt, J. (2003). A Unifying Reference Framework for

Multi-Target User Interfaces. Interacting with Computers , 15(3):
289–308.

14. Caffiau, S., et al. Increasing the expressive power of task analysis:

Systematic comparison and empirical assessment of tool-supported
task models. Interact. Comput. (2010),

doi:10.1016/j.intcom.2010.06.003.

15. Klug, T., Kangasharju, J. Executable Task Models. TAMODIA’05,

September 26–27, 2005, Gdansk, Poland. Copyright 2005 ACM 1-
59593-220-8/00.

16. Gharsellaoui, A., Bellik, Y., Jacquet, C. Un système d'aide et de

suivi des tâches utilisateur dans un environnement ambiant. IHM
2014, Oct 2014, Lille, France. pp.130-138, Actes de la 26e

conférence francophone sur l'Interaction Homme-Machine. <hal-
01080244>

10

http://link.springer.com/search?facet-author=%22Josefina+Guerrero+Garc%C3%ADa%22
http://link.springer.com/search?facet-author=%22Jean+Vanderdonckt%22
http://link.springer.com/search?facet-author=%22Christophe+Lemaigre%22
http://link.springer.com/book/10.1007/978-0-387-09678-0
http://link.springer.com/book/10.1007/978-0-387-09678-0
http://link.springer.com/bookseries/6102
http://link.springer.com/bookseries/6102
https://hal-supelec.archives-ouvertes.fr/hal-01080244
https://hal-supelec.archives-ouvertes.fr/hal-01080244

