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RÉSUMÉ 

The linguistic perspective emphasizes the use of 

linguistic taxonomy to classify (partition) graphical user 

interface concepts and elements on several linguistic 

levels with clearly-defined interfaces between levels. 

This perspective is based on Nielsen’s Virtual Protocol 

for Interaction that consists of several linguistic levels: 

goal, pragmatic (task), semantic, syntactical, lexical, 

alphabetical and physical.  

A linguistic modeling is modeling the graphical interface 

by abstracting each linguistic level. The aim of the 

linguistic modeling is to enhance the maintainability 

quality of the graphical user interface model as defined 

in ISO-25010:2011, by enhancing sub-qualities of 

modularity, analyzability and modifiability.   

Recent research reported on the linguistic perspective 

and the linguistic modeling requirements. In this paper, 

we elaborate more towards a linguistic modeling by 

modeling the task level; the high abstract level in the 

linguistic stack. Our contribution is an executable 

hierarchical task model that fulfils the specific needs 

towards linguistic modeling. 
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systems;  Linguistic modeling. 
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INTRODUCTION 

Developing usable User Interfaces (UIs) is a challenging 

and a complex task. This complexity mainly comes from 

the heterogeneity of contexts of use. Users interact using 

different devices (desktop, mobile...etc.), with different 

goals, cultures and capabilities and within different 

environments and situations. The perfect UI is hard 

(pragmatically impossible) to achieve. To cope with such 

continuously changing domain we need to prepare for 

changes that are expected at any time.  

Enhancing maintainability of the GUI enhances the 

ability to implement changes. ISO/IEC 25010:2011 

defines maintainability as [1] “degree of effectiveness 

and efficiency with which a product or system can be 

modified by the intended maintainers”. This quality is 

sub-divided into sub-qualities represented in table 1.  

ISO 25010:2011: definitions of sub-quality 

Modularity: The degree to which the system or computer program 
is composed of discrete components such that a change to one 
component has minimal impact on other components. 

Reusability: The degree to which an asset can be used in more 
than one software system, or in building other assets. 

Analyzability: The degree to which the software product can be 
diagnosed for deficiencies or causes of failure in the software, or 
for the parts to be modified to be identified. 

Modifiability: Corrections, improvements or adaptations of the 
software to changes in environment and in requirements and 
functional specifications. 

Testability: The degree to which the software product enables 
modified software to be validated. 

Table 1. Maintainability sub-qualities in ISO-25010:2011. 

Recently, researchers reported on a linguistic perspective 

to develop Graphical User Interfaces (GUIs) [2]. The 

aim of this perspective is to enhance the maintainability 

quality in the developed GUI. This perspective is based 

on Nielsen’s Virtual Protocol for Interaction [3]. It 

employs a well-defined linguistic taxonomy to 

repartition GUI concepts and elements on several 

linguistic levels. These levels are mutually-exclusive: a 

GUI concept/element belongs to one and only one level. 

The resulting categories from the linguistic taxonomy 

(the linguistic levels) are: goal, task, semantic, syntax-

time, syntax-space, widgets and widgets properties.  The 

linguistic taxonomy does not only classify GUI concepts 

and elements, but also classifies changes on the GUI on 

different levels. Repartitioning GUI elements on levels 

leads to loosely-coupled modules on each level. This 

would enhance modularity on the GUI and consequently 

enhances the maintainability. A background on the 

linguistic perspective and how it enhances modularity is 

introduced in the next section. The linguistic perspective 

differentiates GUI input elements that change the task 

state (task input elements) from others and classifies 

them on the task level.  

Model-Based User Interface (MB-UI) approaches gained 

a lot of interest from the Human-Computer Interaction 

(HCI) community due to their benefits and promises [4]. 
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The ultimate goal of these approaches is to address 

complexity of interaction in UIs. This complexity is 

addressed by mainly: (1) abstraction: to isolate the 

problem of interest and thus concentrate on the more 

important aspects, and (2) enforcing an engineering 

discipline by establishing systematic approaches to 

develop UIs. 

A linguistic modeling approach aims at abstracting 

modules on linguistic levels defined in the linguistic 

perspective [12]. The marriage between modeling 

approaches and the linguistic perspective promises to 

have the benefits of both. A linguistic model of the GUI 

promises to follow an engineering discipline with 

enhanced maintainability in the GUI. But, is modeling 

from a linguistic perspective feasible? 

The answer to the above question is to build a linguistic 

model by abstracting each linguistic level. The highest 

linguistic levels are the goal and the task. The 

contribution of this paper is to introduce a task model 

that fits the linguistic task level. This is a first step 

towards building a linguistic model. The difference 

between our model and other task models is mainly in: 

(1) Task identification criteria (adopted from the 

literature) to separate what is a task (on the task level) 

and what is refinement on how to carry out the task (on 

the semantic level, the lower level), (2) A modeling 

notation that helps in identifying needed task input 

elements in the GUI. Researchers and task modelers 

interested in addressing maintainability of GUIs from a 

linguistic perspective are the primary targeted audience 

of this paper. 

In the next section, we give a background on the 

linguistic perspective to allow understanding how the 

linguistic perspective enhances maintainability. Our 

contribution and requirements for the linguistic task 

model are further explained at the end of section two 

which motivates the need for a linguistic task model. In 

section three, we review some existing task models to 

identify shortcomings in fulfilling linguistic task model 

requirements.  Section four introduces our linguistic task 

model’s notation and gives an example on how to use the 

notation. Section five presents the simulator and 

execution of the task model. Finally, section six states 

conclusion and future works. 

A BACKGROUND OF THE LINGUISTIC PERSPECTIVE 

Before explaining the linguistic perspective, we spot the 

light on the role of classification in modeling, which is 

usually implicitly considered. The linguistic perspective 

emphasizes the need for an explicit classification and a 

well-defined taxonomy to enhance maintainability of the 

GUI.  

Modeling and classification 

Each UI model has a specific point of view to the UI 

domain. This point of view guides abstraction efforts of 

the modeler and thus controls modeling decisions. For 

example, distribution of the domain concepts and 

elements in Cameleon Reference Framework (CRF) [13] 

depends on the point of view adopted. CRF defines four 

levels of abstraction for a UI: (1) the task model, (2) the 

Abstract UI model (AUI), that is modality and platform 

independent, (3) the Concrete UI model (CUI), that is 

platform-independent and finally (4) the Final UI model 

(FUI) that is platform-dependent. This point of view 

implies an implicit classification that classifies concepts 

like “the color” (a modality-dependent, platform 

independent concept) on the CUI level. The same applies 

on “layout” concepts: they are classified at the CUI level. 

Classification and maintainability 

The general procedure to modify a GUI passes through 

the following steps: (1) Locate the place of the change, 

(2) identify the element(s) to be changed, (3) Delineate 

the propagation of the change (all related and affected 

elements), (4) Modify the GUI and finally (5) Test the 

GUI. 

The first step is related to identifying the module in the 

GUI. In a MB-UI approach that employs several levels 

of abstraction (the case of CRF), this step is related to 

locating the model/level concerned with the change. 

Locating the right module/level is related to the 

modularity sub-quality in the GUI. This sub-quality is 

better addressed in these approaches than in single-

model approaches. A single-model approach employs 

only one model to generate the final UI (like from task 

model to the final UI). 

The second and third steps are related to the 

analyzability sub-quality (see analyzability definition). 

The fourth step is related to the modifiability sub-quality 

and the last step is related to the testability sub-quality. 

Classification impacts the modularity: what 

modules/levels should be defined in a GUI, and what 

concepts/elements should exist in each module. The 

example on how “the color concept” is classified in CRF 

shows this impact on MB-UI approaches. A mutually-

exclusive classification of GUI concepts and elements 

enhances the modularity quality because it repartitions 

GUI concepts and elements on separate modules/levels 

(the classification categories). A concept/element can’t 

repeat on two modules/levels. If such a repetition exists, 

locating the place of change is affected. In other words: 

repetition of concepts and elements increases coupling 

between modules/levels and thus affect maintainability. 

The Linguistic Perspective 

The basic idea of the linguistic perspective is to have a 

mutually-exclusive classification of GUI concepts and 

elements that is based on a well-defined taxonomy. The 

classification categories define the modules of the GUI. 

As GUI concepts and elements are repartitioned on these 

modules, we need also to define interfaces between 

them. The resulting modular GUI is expected to enhance 
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the maintainability because modules are loosely coupled 

with well-defined interfaces between them. 

In 1986, Jacob Nielsen introduced his Virtual 

Communication Protocol of Interaction. He aims to use 

his protocol to analyze the interaction between the 

human and the machine. His protocol employs a 

linguistic classification of the interaction. The protocol 

consists of seven levels of interaction (ordered by level 

of abstraction): goal, task, semantic, syntax, lexical, 

alphabetical and physical. These levels form a stack of 

interaction, where each lower level implements required 

services for the upper level (realize the upper level). 

Therefore, the interaction is analyzed in a refined way 

from goals to physical level. 

Researchers in [2] turned the protocol of Nielsen from an 

analysis tool to a taxonomy tool to classify GUI concepts 

and artifacts. This taxonomy also classifies activities of 

developing a GUI on linguistic levels, like: Where to 

identify a task? Where to define navigation between 

containers? Where to define placement on the screen? 

The output of their work is a classification of GUI 

concepts and elements on adapted levels from the 

original protocol. These levels are presented in table 2 in 

the first column. The second column shows the activities 

classified per level, while the third column shows the 

main GUI concepts and elements classified 

(repartitioned) per level, and grouped into key 

representative groups. The last column shows the 

communication interface between levels. Definitions of 

key terms introduced in the table 2 are below: 

Detailed 

functions 

Defined on the semantic level to realize a task. They 

detail how a task is carried out. They should identify 

all needed UI elements (input and output elements) on 
the GUI for performing the task. 

UI elements A UI element is either of type input or output. UI 

elements are concretized on the screen as widgets. 
They can be visible (like a label, a text box, a button 

or another widget) or non-visible (like a finger 

gesture, a mouse click, a key-press or others). 
Concretizing input elements is an activity on lower 

levels. 

Task input 
element 

is an input element that can exclusively change a task 
state (like complete a task or roll it back), but can’t do 

anything else (like acquire data from the user of 

execute a detailed function). None-task input elements 
can’t change a task state. Anyway, they can execute a 

detailed function or acquire data from the user. 

Syntax-time 
container 

is a logical group of UI elements that should be 
available together at the same time. Availability of a 

UI element on the screen here is not related to 

visibility of the concretizing widget. A UI element 
might be concretized as a non-visible input (keyboard 

shortcut or gesture or others). We may use the shorter 

term “time container” for these containers. 

Navigation 

Elements 

are responsible of moving on the time axe from one 

time-container to another. They can be concretized as 

concrete input widgets (like a button or a link). An 
example is the next or back buttons in a GUI wizard. 

Syntax-space 

container 

is a group of UI elements that belong to concurrent 

syntax-time containers (time containers that appear at 
the same time). A syntax-time container defines 

placement rules that control its UI elements placement 

on the screen. These rules define acceptable 

placement of UI elements on the screen. We may use 

the shorter term “space container” for them. 

 Level Activities 
Key GUI concepts & 
elements 

Communication 
Interface 

Goal 
the goal of the user of 
the GUI 

goal - 

Task 
Define tasks needed 
to attain the goal 

Task input 
elements 

U
I 

E
le

m
en

ts
 

-Realize goals. 

Semantic 
Define detailed 
functions needed to 
carry out a task 

Non-task input 
and output 
elements 

-Realize tasks by 
defining needed 
detailed functions. 

Syntax- 
time 

Define distribution of 
UI elements on time 
by defining time 
containers. 
Define navigation 

Time 
containers. 
Navigation 
elements. 

C
o

n
ta

in
er

s 

-Realize distribution 
of UI elements on 
time. 

Syntax- 
space 

place UI elements in 
time containers on 
the screen 

Space  
containers 

-Realize placement 
of UI elements on 
the screen. 

Widgets 
map UI elements to 
GUI widgets 

Concrete GUI 
widgets 

G
U

I 
W

id
ge

ts
 -map UI elements 

and containers to 
widgets. 

Widgets 
Properties 

Set properties of GUI 
widgets 

Properties of 
widgets 

Implement widgets 

Table 2. The linguistic classification  of GUI activities and 

GUI concepts and elements.  

The linguistic perspective illustrates that concretization 

of concepts on the final GUI as widgets might lead to 

loss of their relation to the concept. For example: A 

button that completes a task on the GUI is not at the 

same level of abstraction as a button that validates data 

on the GUI. These two buttons are also different from a 

third button that simply moves to the next or previous 

screen. Each of these buttons should be related/defined 

to/at the right level of abstraction. This is further 

explained in the next example. 

Take the example of a GUI for registration to a 

conference. The end-user needs to fill registration 

information and then pay the fees. Registration 

information include the user’s personal information, 

registration type (regular, student or discounted fees), 

additional information if exists, and billing information. 

The goal of the user from using the GUI is: Register for a 

conference. This goal is further refined at the task level 

by performing two tasks: “Fill registration information” 

and “Pay conference fees”. The task level should identify 

task input elements, which are in this case, input 

elements each completes the related task. In figure 1, we 

present the “Finalize Order” task input element that 

completes the first task. 

On the semantic level (figure 1): For conciseness, we 

only refine the task “Fill registration information”. At 

this level, we need to define detailed functions to carry 

out the task. These detailed functions in turn identify all 

UI elements needed to carry out the task.  
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 Figure 1. Outcome on the semantic level. “Finalize Order” 

is a task input element.  

On the syntax-time: we define a correct distribution on 

time (that respects environment constraints). We may 

have two styles: (1) Display UI elements at the same 

time. (2) Define navigation as in figure 2. 

 

Figure 2. Distribute on time containers and define 

navigation elements for parts of the GUI.   

On the syntax-space (figure 3): we refine only the 

syntax-time style 1 for conciseness: place elements on 

screen. Figure 3 depicts only the output of this level for 

the first time container: Personal Information according 

to syntax-time style 2 in figure 2. 

On the widget level (figure 4): map UI elements to 

concrete GUI widgets. Finally, on widget Properties 

level (figure 5): Setting properties of widgets to get the 

final GUI. 

On the final GUI, we note that every element is related to 

the level of abstraction that defines it. The “next step” 

button in figure 5 is defined at the syntax-time level, 

while other input elements (concretized as text boxes) 

are defined at the semantic level. The reader can foresee 

that the input element “Finalize Order” (see figure 2) 

shall be concretized on the screen as a widget (like a 

button). 

Please notice that upper levels may impose constraints 

on the choices on lower levels (like selection of widgets). 

Finally, the linguistic perspective enhances 

maintainability by enhancing sub-qualities as 

demonstrated in table 3. 

 

Figure 3. Placement of elements on the screen. 

 

Figure 4. Mapping UI elements with concrete GUI widgets.  

 

 

 

 

 

 

 

 

Figure 5. Setting widgets properties and the final GUI. 

A Linguistic task model’s requirements 

The linguistic modeling approach aims at abstracting 

each linguistic level. The promise is to add the benefits 

of modeling approaches to maintainability enhancements 

in the linguistic perspective. The first step towards a 

linguistic model is to abstract the goal and task levels. 

From the previous background on the linguistic 

perspective, we elicit the following requirements for a 

linguistic task model: 

1- Well-defined criteria to separate between the 

goal and the task levels/models. 
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2- Well-defined criteria to separate between the 

task and the semantic model/level. 

3-  A notation that supports identifying task input 

elements. 

Support for ISO-25010:2011 maintainability sub-qualities 

Modularity: The perspective consists of 7 levels (modules), with 
defined interfacing between them. Changing a level will not affect 
the levels above, and may change impose changes to lower levels if 
the interfacing part is affected (replace a widget by another modifies 
only the widgets level and lower). 

Reusability: If we want to create a GUI for registration to another 
conference that follows the same task model and provides same 
semantic but with a different GUI style, the task and semantic levels 
can be imported directly to the new system. 

Analyzability: Every element at a level can be traced to upper level. 
For instance, a widget can be traced to the detailed function and task 
that needs it. 

Modifiability: The perspective can classify a change based on 
required activities (modification) per level. Modifiability can be 
addresses per level instead of the complete GUI. 

Testability: modifying a level doesn’t affect upper levels. No testing 
for upper levels is required. 

Table 3. The linguistic perspective and maintainability. 

Our proposed task model follows the hierarchical task 

analysis approach. Unfortunately, hierarchical task 

analysis couples goals and tasks in an inseparable way. 

The hierarchy of tasks is a hierarchy of goals and sub-

goals. This is further discussed in the next section. 

Anyway, we do not know of other approaches that 

separate goals and tasks clearly. Thus, the first 

requirement to separate between goals and tasks is 

impossible to satisfy.  

The second requirement is fulfilled by reviewing the 

literature on task models. We investigate how reviewed 

task models identify tasks and adopt the most appropriate 

criteria. Lastly, the third requirement is addressed by 

introducing a task modeling notation that enables 

automatic identification of task input elements.  

A REVIEW OF EXISTING TASK MODELS 

The purpose of this literature review is to demonstrate 

that existing task models do not fulfill the linguistic task 

model requirements in section 2. This would justify why 

we need yet another task model. We do not provide an 

exhaustive analysis of all existing task models. We 

analyze a representative set of models only. 

The models analyzed are: HTA [5], GOMS [8] , CTT [9] 

and K-MAD [14] and HAMSTERS [11]. Another 

analyzed model, the Guerrero model [10], employs task 

models in designing user interfaces for workflows. 

Goals and tasks 

In the late 1960s, Annett and Duncan offered a means to 

describing system in terms of goals and sub-goals, with 

feed-back loops in nested hierarchies [6]. This developed 

later into the specification of HTA (Hierarchical Task 

Analysis). The theory is based on a goal-directed 

behavior where we identify sub-goals in a hierarchy 

linked by plans. Plans describe how to perform sub-goal 

and determine conditions to trigger a sub-goal. The 

performance towards a goal can be achieved at multiple 

levels of analysis. 

HTA is the bases of all existing task models. The theory 

is based on goals decomposition. Sub-goals are goals in 

turn. The hierarchy of tasks is a hierarchy of goals. Thus, 

separation between goals and tasks is impossible. 

GOMS (Goals, Operators, Methods and Selection Rules) 

defines the concepts goals and tasks. Goals in GOMS are 

only high-level goals that are decomposed into tasks or 

sub-goals.  The goal concept in GOMS is not meant to 

separate goals from tasks. GOMS describes the 

procedural knowledge in order for a user to carry out 

tasks on a device or system and is intended to use after a 

complete hierarchical task analysis. 

In what concerns the linguistic perspective, hierarchical 

task analysis approaches can’t separate tasks from goals 

and thus a task model will inherit the limitation of 

identifying what is a task and what is a goal. Anyway, 

we consider the main goal at the goal level, and the 

decomposition of this goal at the task level. 

Task decomposition stopping Criteria 

This is one of the critical aspects in HTA. The 

hierarchical decomposition stopping criterion in HTA is 

determined through the probability of failure (P) 

multiplied by the cost of failure (C) [7]. When the 

estimation of this formula is acceptable, the analyst can 

stop the decomposition. Although this formula is simple 

enough, applicability is hard.    

GOMS does not introduce any changes to the HTA 

theory. It can be established after the complete HTA 

analysis. Thus it also inherits the problem of defining the 

decomposition stopping criteria. The pragmatic approach 

provided in GOMS is based on judgment calls [8]. The 

analyst needs to decide when to stop relying on a 

psychological theory or model for how people do the 

work. GOMS defines the following concepts: goals, 

tasks, methods, operators and selection rules. Methods in 

GOMS are a sequence of operators to carry out a task. In 

the linguistic perspective, GOMS methods fit at the 

semantic level. 

Identification of tasks in CTT is based on identification 

of activities in the scenario. Tasks in the hierarchy can be 

added to represent a semantic grouping of identified 

activity tasks. Anyway, the decomposition may continue 

and stop at the granularity of identifying needed user 

input element. In the latter case, from a linguist 

perspective, CTT may identify non-task input elements, 

which should be identified at the semantic level. It may 

also identify navigation elements (like pagination on a 

grid of flights), which should be identified at the syntax-

time linguistic level. 
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K-MAD is a hierarchical model of tasks from the most 

general one (root) to the most detailed ones (elementary 

actions) [14]. The stopping criterion is the elementary 

action which in the linguistic perspective might be at the 

semantic or even lower level. 

Guerrero’s model [10] addresses developing user 

interfaces to workflow systems. The model contains 

three main entities: the workflow, the process and the 

task.  The workflow is related to a hierarchy of 

processes. Leaves in the process hierarchy represent 

tasks. CTT model is employed to model tasks and model 

the UI. In that, Guerrero’s model differs from CTT in the 

employment of CTT in the UI design as a sub activity in 

the workflow development. 

The interest of this model to this paper is the definition 

of a set of task identification criteria.  These criteria 

identify root tasks that should exist in the process model. 

The root tasks are further refined using CTT to design 

the UI. Task identification criteria are based on changes 

on the work environment as described in the scenario. 

These criteria are: 

- Change of space: when the location of operations 

changes. 

- Change of resource: when the scenario suggests that 

new or different resources are exploited. Resources 

are of types: user, material and immaterial 

- Change of time: when the scenario indicates a 

different time period in which the task is performed. 

Three type exist: interruption, waiting point 

(decision or accumulation) and permanence of 

execution unit (synchronization point). 

- Change of nature: tasks can have the following 

natures: manual, automatic, interactive or 

mechanical.  

Task models that aim at generating the final user 

interface cover all linguistic levels. Thus, Guerrero’s 

models can not be adopted as a linguistic task model. 

Anyway, the process model in Guerrero’s model is at the 

task linguistic level while the task model in Guerrero’s 

fits all the other linguistic levels. Thus, Guerrero’s task 

identification criteria can be employed in the linguistic 

task model in order to identify leaf tasks. 

Task notation and identification of task input 
elements 

The widely used notation in tasks models is the CTT 

notations. Although several variations for this notation 

exist to enhance expressiveness power of the task model 

or mapping with system models, like HAMSTER [11], 

they all use temporal relations defined in CTT.  

Although powerful, CTT temporal relations are not 

enough to identify task input elements in the linguistic 

perspective. We show a scenario on this limitation. 

In order for a user to search for a flight, s/he fills in 

search parameters. The system searches for relevant 

flights and displays them on the screen. The user selects 

the preferred flight. This scenario can be modeled using 

CTT notation as in figure 6. 

 

Figure 6: Search for flight using CTT notation 

The tasks “display flights” and “select flight” in figure 6 

might be implemented in the GUI as a table of flights 

with a “select” button on each row to select the flight. 

This select button is a task input element because it 

completes the task “select flight”. The number of task 

input elements is equal to the number of flights in the 

search result. The linguistic perspective requires 

identifying all task input elements, provided that we 

know the number of flights to display. The notation 

doesn’t reflect that the select flight task will produce a 

number of task input elements related to the number 

of flights displayed. This dynamic aspect in task 

execution is important in the linguistic perspective. 

Note that another style is to display one flight and a 

select button at a time. This style differs from the above 

at the syntax-time level: defining time containers and 

navigation. Even in this style, we need to identify all 

produced task input elements.  

K-MAD notation provides a solution to this dynamic 

aspect, but the notation introduced employs calling 

functions on the data model. From a linguistic 

perspective, these functions are at the semantic level. If 

such functions are to be used on the task level, they 

should take the form of a service to be implemented on 

the semantic level. Klug [15] introduced a task state and 

ports on tasks to exchange data to turn CTT model into 

executable task model. Data ports from the linguistic 

perspective are at the semantic level. Anyway, task state 

diagram is interesting and at the linguistic task level. 

In the next section, we introduce a linguistic task model 

notation to overcome this limitation.  

A LINGUISTIC TASK MODEL 

The need for a new task model notation is justified by 

the linguistic requirement to identify task input elements. 

Task analysis and identification of task are already 

addressed in the literature and we adopted task 

identification criteria from Guerrero model. The task 

hierarchy is established by logically grouping identified 

tasks (like in CTT). A task can have one of the five 

categories: user, interactive, system, mechanical and 

abstract. These categories encompass categories in CTT 

and in Guerrero’s model. The change we introduce in our 
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task model is a notation that supports identifying task 

input elements. 

Identification of user input elements is based on the task 

category. User tasks are not considered in the GUI, 

because they are manual tasks. Thus no input elements 

are needed for these tasks. System tasks are performed 

by the system and require not interaction from the user to 

be started or completed. The same applies to mechanical 

tasks that are performed by machines (not computers), so 

they have no impact on the interaction. Abstract tasks are 

logical tasks in the hierarchy and do not have effect on 

identifying task input elements (they group input 

elements from children tasks). The only interesting 

category that affects identifying task input elements is 

the interactive category as they are performed by the user 

using the GUI. 

An interactive task needs an input element so the user 

can denote the task as completed. Other task input 

elements might be needed to give the user control over 

the performance of the task. For instance, can the user 

rollback a completed task? This is important if the user 

can change his mind after completing the task (an 

example is selecting a flight and then deciding to select 

another).   

The task-state diagram 

Determining needed task input elements for a task 

depends on the task state. The user needs a complete 

input element on the GUI to complete the task in hand. If 

the task can be suspended, a suspend input is needed. 

Once it is suspended, we may need to resume it 

explicitly using a different task input element. Our task 

model defines a configurable task state diagram for 

tasks. Each task can configure its diagram. Identification 

of task input elements for an interactive task depends on 

its configured state diagram. The generic task state 

diagram is depicted in figure 7. The states are explained 

in table 4. 

Transitions in a task’s state diagram from state A to state 

B is defined as a condition. When the condition is 

satisfied, the transition occurs. There are three types of 

conditions: 

1- Automatic: the condition is always true and the 

transition is automatic  

2- User: the condition is true when the user 

provides a required explicit input.  

3- Other Condition (or Condition for short): any 

other boolean expression. When this condition 

is true, the transition is performed. 

A transition type is the type of its condition. Transitions 

for system tasks can be of type “Automatic” or 

“Condition”. User and mechanical tasks has no impact 

on the GUI. Anyway, for consistency, a state diagram 

with “Automatic” transitions is attached to them. 

Transitions for interactive tasks are richer. 

Employing task states can be noticed in other researches, 

like in [16], where researchers enrich CTT by adding 

states to tasks to support run-time execution of the task 

mode. Task states in our model enable identifying task 

input elements. Besides, researchers in [16] use CTT 

temporal relations to define transitions among tasks, 

while states in our model play a major role in defining 

these transitions (in the coming section). 

Properties to configure an interactive task state 
diagram 

Every interactive task must define the condition for the 

complete transition state. This condition must be of type 

“User” or “Condition”, with use as a default. Setting the 

condition type to “User” means the task requires an input 

element on the GUI to allow the user to complete it. 

Setting the condition type to “Condition” means the task 

depends on the state of another task(s) to complete. We 

elaborate more on this case after introducing relations 

between tasks. 

State Type 

Created The task is created by the system. Task initialization can 

happen here. 

Offered The system offers the task to the user to start 

Started The task is in the course of running.  

Suspended The task is in the course of running. For interactive 

tasks, an explicit input from the user is needed. 

Completed The task has completed execution and the sub-goal is 
satisfied. 

Destroyed Resources reserved by the task can be released 

Errored Something prevents running the task.  

Table 4. Definition of task states 

An interactive task sets, by default, all transitions to 

“Automatic”, with the exception for the complete 

transition. Transition types can be configured by setting 

the task properties. These properties and their impact on 

the state diagram are discussed in the following. 

 

Figure 7. The Task State Diagram and transitions.  

Assume the user performing a task would like to 

withdraw already filed in information and restart from 

the beginning. Such tasks are cancellable tasks. Setting 

the canCancel task’s property to true sets the cancel 

transition type to “User”. This impacts the GUI by 

adding a task input element to cancel the task. Setting the 

canCancel property to false removes the cancel transition 

from the task’s state diagram. 

Assume the user can rollback a task. If the task can be 

rolled back, a task input element to rollback is needed on 
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the GUI. An example is when the user selects a flight 

then changes her/his mind. Not every task can be rolled 

back. A payment for a flight task can’t be rolled back by 

simply changing the task state. Rolling back a payment 

usually requires a different process. Rolling back a task 

can be of two types: (1) Stateless:  re-create the task and 

discard all previous task information. (2) State-full:  

restore the task information previously entered before 

completion. The task property canRollBack can have one 

of three values: false, stateless and statefull. The value of 

this property controls the rollback transition. The false 

value removes the rollback transition. The stateless and 

statefull values set the rollback translation type to user, 

although it can be modified to a condition (a relation to 

another task). 

The property “mayError” denotes a task might be 

prevented from execution due to various circumstances. 

If these circumstances are detectable by the system, we 

can define a condition on the error transition. If these 

circumstances are not detectable by the system, the user 

should be given this means to move the task to the error 

state by a task input element on the GUI. The 

“mayError” property can have one of the values: false 

(removes the error transition), condition (define a 

condition transition) and User (define a “User” error 

transition). Another related property is the “canRecover” 

which denotes how to recover from the error if possible. 

It accepts the same values of the property “mayError”. 

The property “canSuspend” on a task controls the 

suspend transition in a similar way to canCancel 

property. The resume transition is influenced by this 

property. A task might be suspended by the user action, 

but resumed based on the state of another task. In this 

case, the suspend transition is set to user but the resume 

transition is a condition. The resume transition initial 

type is set to user when the suspend transition type is set 

to user. 

The destroy transition is a special case and is defined 

when a task is dynamically created by another. Dynamic 

tasks are discussed later in this section. For dynamic 

tasks, destroy transition can have one of two types: user 

or condition. Offer and start are condition transitions. 

The user can’t control to start a task by an input. The 

system offers and starts the task once conditions are 

satisfied. The create transition is a special transition that 

is related to dynamic tasks (discussed later section). 

Tasks relations  

Relations between tasks control the task execution 

sequence towards attaining the goal of the parent task. 

Relations take the form of ECA (Event, Condition and 

Action) rules: 

Event ON TS.State TS is the source task 

Condition TD.State= “value” TD is the destination task 

Action TD.Transition  

An example on relations is: 

ON Fill_Flight_Search_Info.Completed  

If (Display_Flight.State=”Created”) 

Display_Flight.offer 

Because transitions are un-ambiguously defined in the 

task’s state diagram, the condition part can be 

automatically verified when executed in the condition. 

Thus, we can omit the condition part from the relation. 

The action part is ensured to be executed in the relation, 

but the destination task may not change its state. 

Changing the destination task state depends on the 

transition condition. If the transition’s condition is 

evaluated to true, the state is changed. 

Task relations can be seen as adding an “AND” 

condition (the event and condition) to the task’s 

transition defined in action part. In the example above, 

the task Display_Flights changes its state to “Started” if 

the offer transition condition is evaluated to true and the 

Fill_Flight_Search_Info state is “Completed”. 

Relations can be defined on sibling tasks in the 

hierarchy. Children tasks can also be related to direct 

parents. An example on defining relations between tasks 

is depicted in figure 8. In this figure, we note that a child 

task has a relation with the parent to complete it upon 

completion.  

Optional tasks 

Optional tasks are tasks that always look to parent tasks 

as completed, although their state diagram indicates a 

different state. An optional task has the property 

“isOptional” set to true.  

Task Repetition 

Repetition can be implemented on a task T using 

relations like: On T.Completed, T.offer. Anyway, this 

can’t be executed at run time, because the “offer” 

transition is not possible from the “Completed” state. 

The rule should be updated to: On T.Completed, 

T.create. The latter rule means a new instance of the task 

T is created once the task T is completed. We call the 

newly created task instance a dynamic task. 

A dynamic task is a task that is created by another task at 

run-time. Creation of these tasks (repetition decision) 

could be initiated by an explicit action from the user or 

by the system. The need for a decision for repetition 

justifies the need for a different task (the justification for 

identifying this task is a change of time::decision point). 

Thus, to repeat a task “T”, we need a task for the 

decision “R”. The relation between these tasks to enable 

repetition can be defined like: On R.Completed, T.create. 

R is called the pumping task (it pumps dynamic tasks in 

the model). 

If the repetition decision is taken by the user, the 

pumping task must be interactive and dynamic. If the 

repetition decision is taken by the system, the pumping 

task needs to have the property “repeatable” set to “true”. 

This is important because it has implications on the state 

diagram: an automatic transition is defined from the 
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completed state to the created state. The repetition 

condition in a system pumping task is the condition of its 

offer transition.  

Demonstration and implementation 

Building a convincing example on using the notation 

would take a large space. A pragmatic, and still 

convincing, technique is to demonstrate expressiveness 

of the approach in comparison to other notations.  

The comparison with CTT notation is demonstrated in 

figure 8. This figure shows how temporal relations can 

be represented using our notation. Thus, the notation 

introduced in the linguistic task model is at least 

equivalent to CTT notation. 

 

Figure 8. Representation of CTT temporal relations using 

the linguistic task model notation. 

I

d 

P
a
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Task Justification Configuration 

1 / Search for a 
flight 

Grouping Abstract, Stateless 
rollback,  

2 1 Fill Search 

params. 

- Interactive, State-full 

rollback, canCancel=true 

3 1 Display 
Flights 

Grouping Abstract,  Stateless 
rollback, 

4 3 Repeat on  

flights 

Repetition. System,    Stateless 

rollback, 

repetitionTask=true 

5 3 Display a 

Flight 

From 2: Change 

in nature: 

interactive-
>system 

System,    Stateless 

rollback, 

canCancel=false 

6 3 Select the 

Flight 

From 4: 

Decision point 

Interactive,    Stateless 

rollback, 
canCancel=false 

Table 5. Decomposition of the goal “Search for a flight”. 

The linguistic task model notation addresses also the 

dynamic aspect of task execution. We give an example 

on this dynamic aspect, which is not supported in CTT 

notation to the same level of details (see explanation on 

this limitation on page 6, column 2).  

The example we present has the goal “Search for a 

flight”. This goal is decomposed into the following tasks 

with justifications and configurations in table 5. The 

scenario works as follows: The user fills in search 

parameters. The system searches for relevant flights and 

displays them on the screen. The user selects the 

preferred task. 

The task “Display Flights” is a repetitive task, because 

for each flight the system displays, the user has the 

choice to select it or select another one. Thus, the 

notation enforces adding a system pumping task that 

pumps the tasks “Display a Flight” and “Select the 

flight”. That pumping task repetition condition is the 

number of flights in the search result. Table 5 shows 

tasks, their justification and configuration values. 

 

Figure 9. Search for flight example. 

From a linguistic perspective, Figure 9 provides the 

means to identify task input elements. Each dynamic 

interactive task “select the flight” requires a task input 

element for completion. The total identified task input 

elements at run-time is equivalent to the number of 

flights in the search result. Besides, other task input 

elements can be identified for each task from its state 

diagram and transitions. Every “User” transition requires 

a task input element to enable the transition. 

The current implementation for designing the task model 

uses a java API. A graphical designer is still under work. 

The Java API allows creating tasks and configuring 

properties. It also allows defining relations between 

tasks. The critical and essential part in the 

implementation is the run-time simulator for a linguistic 

task model that generates task input elements. This 

simulator is already implemented and tested. 

Figure 10 shows the result of executing the task model in 

the simulator at two moments: the first is at the start and 

the second after the selection of a flight. Every task is 

displayed in a rectangle. The border color of the 

rectangle reflects the task state (see color caption in 

figure 8). Grey color denotes the “Created” state (the 

Repeat on flights task), while “Black” color denotes 

undefined state (the case of a dynamic task).  

Figure 10 demonstrates the creation of dynamic tasks 

after completing the “Fill search param.” task.  Tasks are 

refined at the semantic level by defining detailed 

functions that define how to carry out the task. This 

includes the needed non-task input elements for every 

task, and also transition conditions for the system tasks. 
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The repetition condition in the model must be realized at 

the semantic level based on the search result. In the 

simulator on the linguistic task level, system repetition 

conditions are realized as repetition for two times only. 

This is why we see only two instances of the dynamic 

tasks “Display a flight” and “select the flight”. 

 

Figure 10. Executing the “search for a flight” task model in 

the simulator. 

Figure 10 also demonstrated the identification of task 

input elements for each task. For example, we can see 

four rollback elements. Each rollback has a different 

purpose on the GUI. The rollback on the “select flight0” 

task is to allow selecting a different flight. The rollback 

on the “Display Flight” task is to allow re-executing 

children, which includes: re-execute the query and re-

create dynamic tasks. It might look like a refresh button. 

The rollback on the “Fill search params.” allows 

modifying current search parameters (stateful rollback). 

The rollback on the root task is to rollback everything 

including current search parameters. The GUI designer at 

a later stage can decide how to manage these different 

rollback, but he already knows that ignoring any is 

limiting a functionality in the model. 

CONCLUSION AND FUTURE WORKS 

In this paper, we presented a linguistic task model and 

notation. The presented linguistic task model clearly 

separates the task and the semantic levels by adopting a 

well-defined set of task identification criteria proposed 

by Guerrero. We also discussed the impossibility to 

separate goals from tasks in hierarchical task approaches. 

A new task modeling notation is introduced. This 

notation enables identification of task input elements. 

This identification is based on the task state diagram that 

is configured on each task. 

The notation also addressed the dynamic aspect of 

modeling by introducing dynamic tasks and pumping 

tasks. It also presented relations on tasks based on ECA 

rules on tasks states. Anyway, further research is needed 

to enhance the understandability of the notation. 

The task model is the first brick towards modeling GUI 

from a linguistic perspective. In the future, we will keep 

working on modeling other linguistic levels. Tool 

support should be worked on too. We needs to work on 

creating a tool to support the notation introduced.  
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